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Alterations in heart-brain 
interactions under mild stress 
during a cognitive task are reflected 
in entropy of heart rate dynamics
Estelle Blons   1*, Laurent M. Arsac1, Pierre Gilfriche1,2, Heather McLeod3, 
Veronique Lespinet-Najib4, Eric Grivel4 & Veronique Deschodt-Arsac1

Many people experience mild stress in modern society which raises the need for an improved 
understanding of psychophysiological responses to stressors. Heart rate variability (HRV) may be 
associated with a flexible network of intricate neural structures which are dynamically organized 
to cope with diverse challenges. HRV was obtained in thirty-three healthy participants performing 
a cognitive task both with and without added stressors. Markers of neural autonomic control and 
neurovisceral complexity (entropy) were computed from HRV time series. Based on individual anxiety 
responses to the experimental stressors, two subgroups were identified: anxiety responders and 
non-responders. While both vagal and entropy markers rose during the cognitive task alone in both 
subgroups, only entropy decreased when stressors were added and exclusively in anxiety responders. 
We conclude that entropy may be a promising marker of cognitive tasks and acute mild stress. It 
brings out a new central question: why is entropy the only marker affected by mild stress? Based on 
the neurovisceral integration model, we hypothesized that neurophysiological complexity may be 
altered by mild stress, which is reflected in entropy of the cardiac output signal. The putative role of 
the amygdala during mild stress, in modulating the complexity of a coordinated neural network linking 
brain to heart, is discussed.

Many people experience stress in modern society, which can strongly influence their mental and physical 
well-being. Short-term physiological and psychological responses to stress are healthy regulations; yet, more pro-
longed exposure or inadequate responses to stressors can lead to depletion of resources and can be a source of 
chronic diseases1,2.

We can undoubtedly relate the concept of stress to the works of Walter Cannon3, who first described 
short-term physiological changes giving rise to the fight-or-flight behavioral responses. Later on, Hans Selye4, by 
studying various physiological stressors, observed consistent effects on the organisms leading him to define stress 
as “the non-specific response of the body to any demand upon it”. From the works of Mason5, most researchers 
have reconsidered the model of Selye when dealing with psychological stressors, since they are tied to the way we 
interpret situations or events6–8. This points out that stress is rather a highly individual experience based on the 
transaction between an individual and its environment5,6. As a matter of fact, the stress reactivity of the organism 
relies on the personal perception, interpretation and appraisal made about the stressors7,8, which are themselves 
driven by diverse individual determinants (e.g. personality, socio-economic status…)9–12. The interpretation of 
unpredictability, novelty and uncontrollability of a given situation, but also its character of social evaluative threat, 
are the four factors highlighted to imply a stress response from the body5,13.

When one individual interprets a situation as stressful, there is a need for the body to trigger acute changes 
that serve the mobilization of energy and resources to coordinate an adequate response3–5,14–18. This response 
requires the activation of the sympathetic-adrenal-medullary and the hypothalamic-pituitary adrenal axes16–18. 
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The associated secretion of catecholamines and glucocorticoids allows for short-term changes in blood pressure 
and heart rate, making the cardiovascular system particularly sensitive to the stress effects14.

The analysis of heart rate variability (HRV, or RR interval time series) provides information on changes in the 
tone of vagal (parasympathetic) and sympathetic control of the autonomic nervous system that triggers most of 
short-term cardiovascular modulations19,20. HRV analyses are believed to provide valuable and relevant markers 
of acute stress21. Connections between the autonomic regulations and the central nervous system have been 
acknowledged since the 90’s22, and further evidenced by neuroimaging studies23–27. Through the central auto-
nomic network (CAN), the brain exerts a tight control on a wide variety of the body’s regulations (e.g. viscera, 
hormonal secretion) that are critical for flexibility and goal-directed behavior22. The CAN components are dis-
tributed over a number of interconnected neural structures and parallel pathways managing multiple inputs and 
outputs22,28. This intricate network is at the origin of the complex control of heart rate dynamics driven by vagal 
and sympathetic modulations20. From this view point, HRV reveals more than just a healthy cardiac function, 
but also how the brain achieves flexible control and adaptive regulations19, allowing us to explore coordinated 
heart-brain interactions through the concept of neurovisceral integration22,29.

HRV measures have allowed to assess central nervous processes, such as attentional control, emotional regu-
lation and cognition. These assessments mainly focused on time- and frequency-domain analyses of HRV time 
series21,24,25,28. A great deal of attention has been paid to the tonic vagal control28,30–32, defined as the vagal con-
trol under resting-state conditions, where a dominance of vagal power has been linked to an effective prefron-
tal tonic activity25,28,29,33. Under normal conditions, the prefrontal activity consists of the constant inhibition of 
subcortical structures such as amygdala25,34. Much less is known on the acute (phasic31) response to cognitive 
challenges. Confusing results have been reported, evidencing either a blunted23,35–37 or an enhanced31,38 vagal 
response. Hence, while the relationship between vagal function and cognitive processes seems obvious25,28, it 
appears to considerably depend on the context31. Park et al.31 suggested an expected rise of vagal response due to 
one’s self-regulatory effort. However, this vagal response could be blunted by an unfavorable context.

When the context is perceived as stressful, it is widely acknowledged that the circuitry linking the prefrontal 
cortex and the amygdala plays a key role in the stress-related changes in behavior and peripheral physiological 
reactivity through the autonomic control39,40. Anxiety is known to impair the recruitment of prefrontal control 
mechanisms and to disrupt this circuitry, which can lead to an amygdaloid hyper-responsivity41.

It follows from the above that physiological stress effects are initiated in the brain, involve a complex neural 
organization spanning multiple cerebral structures and intricate autonomic integration, that ultimately impacts 
cardiac regulations. The literature increasingly finds an interesting correspondence between the complex organ-
ization of such neurophysiological systems and the complexity of the time series obtained from their signal 
outputs42,43. Recently, a link has been shown between complexity markers extracted from HRV time series and 
cognition, mood and state anxiety44,45. Mainly, entropy (a computation of signal irregularity) has the capacity 
to reflect the complexity of control systems, like the one controlling heart rate42. In Information theory, entropy 
describes the rate of information that is created by a stochastic source of data. This is also seen in physiological 
complexity, where the functioning of healthy systems is complex by nature, and a shift toward simplicity is asso-
ciated with a loss of flexibility and adaptability. As an illustration, cardiac entropy has been shown to vanish with 
aging and pathology42,46,47. This suggests that an entropy-based approach may add significant value to the under-
standing of complex neural organization and heart-brain interactions challenged by stressful and/or cognitive 
conditions44,45.

In the present study, thirty-three healthy participants were asked to perform a cognitive task in different con-
texts: with and without added stressors, while heart rate dynamics were recorded. While vagal and sympathetic 
markers were assessed by classic time- and frequency-domain analyses of HRV, the novelty lies in the use of 
entropy to detect complexity in coordinated heart-brain interactions, in association with stress and cognitive task.

Methods
Population.  The study group consisted of 33 healthy volunteers (age: 35.6 ± 13.9 years, 19 women). All the 
participants gave their written informed consent to participate in the present study in accordance with the prin-
ciples of the Declaration of Helsinki. The study was approved by the institutional review board of the faculty of 
sport sciences, University of Bordeaux, France. All the experiments respected the principles set by the CNIL 
(Commission Nationale de L’Informatique et des Libertés), the CPP (Comité de Protection des Personnes), and 
the ARS (Agence Régionale de Santé). Participants were recruited among university students and employees: all 
of whom have had a university education or were undertaking one. Participants were eligible to participate if they 
did not present prior cardiovascular illnesses (e.g. arrhythmia, heart failure), severe inflammation (e.g. arthritis) 
or psychological disorders (e.g. burn-out syndrome). Furthermore, they did not take any medication influenc-
ing the cardiovascular system (e.g. antidepressant, antipsychotic, antihypertensive, psychotropic). Participants 
were asked to avoid ingestion of alcohol and caffeinated beverages for the 12 hours preceding each period and to 
abstain from heavy physical activity the day before the series of experiments.

Protocol.  The experimental protocol was designed as three successive situations of a duration of 8 min (as 
determined by pre-testing), separated by about 10 min during which participants filled out psychological ques-
tionnaires. During each situation, participants were seated in front of a computer, breathing at spontaneous rate, 
while RR interval time series were recorded as described below. The first situation was systematically the reference 
situation (Ref.), where participants were asked to relax, watching an emotionally neutral documentary film about 
whales (L’odyssée des baleines à bosses, Ross Isaacs, Stan Esecson, 2011). During the following two situations, 
occurring in a randomized order, they performed a cognitive task without stressors (CT) or with additional 
stressors (CT + S). Randomization was performed using the formula = alea() in a spreadsheet, where participants 
were attributed a randomized number that determined the order of the situations.
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Heart rate recordings and analyses.  RR interval time series were directly obtained with ±1 ms accu-
racy from a bipolar electrode transmitter belt Polar H7 (Polar, Finland) fitted to the chest of the participant and 
connected to an iPod (Apple, Cupertino CA, USA) via Bluetooth. A smartphone application (HRV Logger®) 
was used to continuously store RR intervals transmitted by the Polar device. The reliability and accuracy of this 
Polar device have been previously demonstrated, through comparisons with electrocardiography (ECG) meas-
urements48–50. Over 8 min periods, about 400–500 successive RR intervals were obtained, the exact length of the 
RR interval time series depending on the average individual heart rate.

The collected RR interval time series were exported to Matlab (Matworks, Natick MA, USA) for further anal-
ysis, using available functions and custom-designed routines. Initially, the raw data were inspected for artifacts20. 
Occasional ectopic beats (irregularity of the heart rhythm involving extra or skipped heartbeats, e.g. extrasystole 
and consecutive compensatory pause), were visually identified and manually replaced with interpolated adjacent 
RR interval values.

RR interval time series were analyzed in time-domain and in frequency-domain. The average RR duration, 
RMSSD (square root of the mean of the sum of the squared differences between adjacent normal RR) as well as 
power vs. frequency relation were computed, after 4 Hz (regular) resampling using cubic spline interpolation. 
Power was calculated in fixed bands between 0.04 Hz to 0.15 Hz for the low frequencies (LF, associated with 
sympathetic activity) and between 0.15 Hz and 0.4 Hz for the high frequencies (HF, associated with vagal activity) 
after Fourier transform of the resampled RR interval time series20. The ratio LF/HF was calculated, as an index of 
the sympathovagal balance20.

For the purpose of the present study, complexity in the neurovisceral control of the heart was assessed by 
computing entropy in RR interval time series, using a recently improved routine: refined composite multiscale 
entropy (RCMSE)51. This method is based on multiscale entropy (MSE) and its variant, composite multiscale 
entropy (CMSE), which were developed to assess complexity in physiological output signals, based on sample 
entropy over several scales42. At each level of resolution (scale), MSE yields a value that reflects the mean rate of 
creation of information. The overall degree of complexity of a signal is then calculated by integrating the values 
obtained for a pre-defined range of scales. As discussed by Wu et al.51, RCMSE improved the accuracy of MSE 
(and CMSE) by reducing the probability of inducing undefined entropy. For the analysis of short time series (as 
in the present study), RCMSE is strongly recommended51.

Briefly, the RCMSE algorithm consists of the following procedures (see detailed method in51):

	(1)	 The RR interval time series is coarse grained using overlapping windows to obtain the representation of 
the original time series on different time scales τ. Overlapping windows allow for k coarse-grained series at 
each scale factor of τ.

	(2)	 At each scale factor of τ, the number of matched vector pairs τ
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In our conditions, RCMSE was assessed over the range of scales 1 to 3, larger scales being disregarded due 
to the risk of unreliable results51,52. The cardiac entropy index was calculated from the area under the curve of 
entropy vs. scale (using the trapezoidal rule) for scales 1, 2 and 3 as illustrated in Fig. 1.

Cognitive task.  During both the CT and CT + S situations, participants had to perform a nonverbal cog-
nitive task comprising memorization, mental calculation and logic questions. This task was created using the 
E-Prime software (Psychology Software Tools Inc., Pittsburgh, PA). The participants answered by typing on the 
computer’s keyboard. A total of 23 items were presented in CT and 31 items in CT + S (more items in the same 
8 min total duration because limited time to answer an item was part of the stress induction). Despite 23 vs. 31 
items, the content of the items remained the same (memorization, mental calculation and logic questions) in each 
situation CT and CT + S.

Stress induction.  To induce stress during CT + S, stressors were chosen based on a meta-analysis of 208 
laboratory stress studies13. It was shown that physiological responses to stressors are exacerbated when a partici-
pant is exposed to a combination of an uncontrollable environment and a social-evaluative threat. Therefore, each 
question in CT + S was displayed for a predefined time not controllable by the participant. In addition, a visual 
feedback was displayed when the participant gave a wrong answer. Third, two other persons were present in the 
room with the participant and acted as an attentive and evaluative audience. Finally, a variety of sound distur-
bances (e.g. crowd noise) were played continuously during the 8 min situation.

Psychological questionnaires.  Participants filled out two questionnaires after each situation in order to 
assess their state of anxiety and cognitive workload levels. The Spielberger’s State-trait anxiety inventory (STAI) 
was administered to the participants53. The STAI state anxiety scale consists of 20 questions that evaluate the 
current state of anxiety by using items that measure subjective feelings of apprehension, tension, nervousness and 
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worry. The use of NASA task load index (NASA-TLX) allowed a self-assessed measure of workload based on six 
components: mental demand, physical demand, temporal demand, performance, effort, and frustration level54. 
Participants were asked to evaluate each component on a scale, and the weight of each component was then 
assessed before computing a global index, which is the weighted average of said components.

Statistical analysis.  All statistical procedures were conducted by use of XLSTAT (Addinsoft, 2019, XLSTAT 
statistical and data analysis solution, Long Island, NY, USA). Quantitative measurements are expressed as 
mean ± standard deviation.

The group size was determined by power calculation (GPower 3.1.9.2) based on our preliminary data 
obtained during pre-testing (α error probability: 0.05, power 0.8) mean entropy value, 3.61; standard deviation, 
0.47; mean difference 8% [0.289]. This resulted in n = 34 (actually 33 participants were ultimately recruited) for 
one experimental group (Cohen’s d effect size: 0.35). No formal power calculation was performed for time- and 
frequency-domain markers.

Repeated measures analysis of variance (ANOVA) testing with the post hoc Tukey correction was used to 
assess the effects of experimental situations on cardiac markers, state anxiety and cognitive workload scores. The 
variables satisfied the conditions of normality, tested with Shapiro-Wilk test. Unpaired t-test was used when state 
anxiety was compared between subgroups. Pearson correlation calculations were used to examine the relationship 
between changes in state anxiety score and cardiac entropy index. A value of p < 0.05 was considered to indicate 
statistical significance.

Results
State anxiety scores.  While the state anxiety scores exhibited a small range across participants both in 
Ref. and in CT (respectively: 20–44 and 20–48), in contrast, the range was greater when stressors were added in 
the CT + S situation (22–76). When analyzed in more detail, this greater range in CT + S allowed us to identify 
participants with markedly different behaviors and led us to divide the whole population into two subgroups: 
anxiety responders and anxiety non-responders. The quantitative criterion for subgroup constitution was the 
stressors-induced changes in individual state anxiety scores, observed when comparing CT and CT + S - as illus-
trated in Fig. 2. Those individuals exhibiting more than a 20% increase in their anxiety score due to stressors were 
included in the subgroup of anxiety responders (n = 20). The remaining people were included in the subgroup of 
anxiety non-responders (n = 13).

This subdivision did not generate any difference in averaged anxiety score in Ref. situation (29 ± 5 in respond-
ers and 28 ± 8 in non-responders). The execution of a cognitive task (CT) did not result in a change in state anxi-
ety in any subgroup. As expected, because it was the criterion for subgroup subdivision, anxiety score in response 
to stressors (Fig. 2) increased in anxiety responders (+32 ± 8%, p < 0.0001) but not in anxiety non-responders 
(+6 ± 10%, ns).

Cognitive workload scores.  When analyzing changes in cognitive workload score in response to CT and 
CT + S, we observed consistent typical behavior in anxiety responders and anxiety non-responders (Fig. 3). 
The score increased in response to a cognitive task (+119 ± 76%, p < 0.0001, in responders and +118 ± 151%, 
p = 0.0002, in non-responders) and increased again when stressors were added (+48 ± 46%, p < 0.0001, in 
responders and +33 ± 22%, p = 0.0002, in non-responders).

Figure 1.  Typical curves of entropy vs. scales in the three experimental situations for one participant. Following 
a coarse-graining procedure on the RR interval time series, refined composite multiscale entropy (RCMSE) was 
assessed over the scale 1 to 3. The entropy index was computed for each experimental situation, Ref., CT and 
CT + S, by calculating the area under the curve. Ref., reference situation; CT, cognitive task situation; CT + S, 
cognitive task situation under stress.
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Cardiac autonomic markers.  In both subgroups, the mean RR did not change in any situation (Table 1). 
RMSSD increased between Ref. and CT in each subgroup (p = 0.026 in anxiety responders and p = 0.025 in anx-
iety non-responders). Among frequency-domain markers of HRV, only HF power increased between Ref. and 
CT in non-responders (p = 0.005). Both results are associated with vagal enhancement in CT. No change was 
observed in other autonomic markers (LF power, LF/HF, Table 1). It is worth noting that none of these autonomic 
markers changed in response to stressors (CT + S, Table 1).

In contrast with the above classic cardiac markers in time-domain and frequency-domain, the entropy marker 
revealed the physiological impact of stressors during the cognitive task (Table 1, Fig. 4). Further, changes in 
cardiac entropy brought valuable information about stress when analyzed in relation to the above-mentioned 
subjective ratings of state anxiety and cognitive workload. While the entropy index increased in CT, both in 
anxiety responders and non-responders (+11 ± 19%, p = 0.026, in responders and +8 ± 10%, p = 0.028, in 
non-responders), only anxiety non-responders were able to maintain a high level of entropy in presence of stress-
ors (CT + S). In contrast, entropy dropped in anxiety responders (−8 ± 10%, p = 0.005, Fig. 4).

A deeper analysis of individual responses strengthened the link between entropy and anxiety. As shown in 
Fig. 5, when stressors were added to CT, individual changes in state anxiety level were correlated with individual 
changes in cardiac entropy: the greater anxiety, the greater drop in entropy.

Discussion
Previous studies have described top-down heart-brain interactions through a complex network involving the 
autonomic nervous control of the heart rate28. Here, we have hypothesized that cognitive-induced neural modu-
lations would reverberate in signal complexity of RR interval time series, which could be degraded by stress42,55. A 
set of vagal, sympathetic and entropy markers was obtained during cognitive task and mild stress situations. The 
main finding was that both vagal tone and entropy increased during the cognitive task, but entropy alone reflected 
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Figure 2.  State anxiety score for each experimental situation. Anxiety responders are represented in (a) and 
anxiety non-responders in (b). Ref., reference situation; CT, cognitive task situation; CT + S, cognitive task 
situation under stress. Error bars represent the standard deviation.
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Figure 3.  Cognitive workload score for each experimental situation. Anxiety responders are represented in (a) 
and anxiety non-responders in (b). Ref., reference situation; CT, cognitive task situation; CT + S, cognitive task 
situation under stress. Error bars represent the standard deviation.
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SUBGROUP MARKERS

SITUATIONS

Ref. CT CT + S

Anxiety responders 
(n = 20)

RR mean (ms) 854 ± 145 871 ± 136 848 ± 135

RMSSD (ms) 34 ± 19 43 ± 21* 40 ± 17

HF (ms2) 664 ± 829 921 ± 841 727 ± 497

LF (ms2) 1111 ± 1075 1545 ± 1136 1416 ± 925

LF/HF 2.30 ± 1.29 2.57 ± 1.58 2.52 ± 1.20

Entropy index 3.67 ± 0.49 4.01 ± 0.54* 3.68 ± 0.52††

Anxiety non-
responders (n = 13)

RR mean (ms) 877 ± 104 883 ± 87 866 ± 79

RMSSD (ms) 35 ± 20 43 ± 20* 39 ± 18

HF (ms2) 730 ± 939 963 ± 1057** 797 ± 851

LF (ms2) 1060 ± 697 1352 ± 990 1195 ± 708

LF/HF 3.32 ± 3.58 2.56 ± 2.41 2.94 ± 3.09

Entropy index 3.67 ± 0.46 3.94 ± 0.38* 3.99 ± 0.37#

Table 1.  Physiological markers extracted from heart rate variability time series, in reference, cognitive task 
and cognitive task under stress situations. Data are reported as mean ± standard deviation. Ref., reference 
situation; CT, cognitive task situation; CT + S, cognitive task situation under stress; RMSSD, root mean square 
of the successive differences; HF, high frequencies; LF, low frequencies. Significant differences are expressed 
as: between Ref. and CT: *p < 0.05 and **p < 0.01 between Ref. and CT + S: #p < 0.05, between CT and CT + S: 
††p < 0.01.

Figure 4.  Cardiac entropy index for each experimental situation. Anxiety responders are represented in (a) 
and anxiety non-responders in (b). Ref., reference situation; CT, cognitive task situation; CT + S, cognitive task 
situation under stress. Error bars represent the standard deviation.
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psychophysiological responses to mild stress. In addition, the correlation between entropy changes and anxiety 
responsiveness shed new light on the intricate neurophysiological functions and how they are impacted by stress.

Considering that the cardiac response induced by a cognitive task should differ from that induced by stress-
ors25,31,32,56, a challenge in the present study was to distinguish psychological stress from cognitive workload57,58. 
The cognitive workload is described as the mental cost to operate a task54 and has been shown to increase with 
working memory tasks and during problem solving59. In our conditions, this was reflected in the rise of cognitive 
workload estimated by the participants in CT (Fig. 3). All participants, irrespective of their subgroup (anxiety 
responders or anxiety non-responders), perceived the cognitive workload without experiencing an increase in 
anxiety (Fig. 2).

The rise in cognitive workload was concomitant to a heightened vagal influence on cardiac control (Table 1). 
Several studies have linked the parasympathetic modulations of the cardiac rhythm by the vagus nerve to cog-
nitive processes, pointing out an index of how strongly top-down appraisals, mediated by cortical-subcortical 
pathways, shape brainstem activity and autonomic responses24,25,31. Within the framework of the neurovisceral 
integration model, most studies have focused on the vagal function at rest, associated with the concept of tonic 
vagal control25,56,60,61. Here, we instead focused on the acute (phasic) vagal response, related to baseline-to-task 
changes28,31, which has been shown to depend on the context31. In our conditions, the observed heightened vagal 
control in every participant is in agreement with a better attentional control31.

In the present study, two subgroups were described among participants, anxiety responders and anxiety 
non-responders (Fig. 2). This distinction was motivated by the observation that state anxiety response to stressors 
(CT + S vs. CT) was highly heterogeneous, and the will to understand the psychophysiological meaning of the 
differences. Anxiety is defined as a negative emotional response to threatening circumstances which is associated 
with physiological stress arousal62,63. It is common to observe different anxiety patterns when people are facing 
stressful situations13,45, because there is no common way to react to stressful and challenging environmental expo-
sure64. By definition, a stressor is a stimulus that triggers a physiological response when a potential threat is per-
ceived by the brain. This perception depends on intrinsic individual factors65, such as personality9, socioeconomic 
status10, personal history or stored memory66. As illustrated, a same stressful situation (CT + S) was interpreted 
either as innocuous or as a potential threat from one participant to another, as shown by various individual state 
anxiety. This different perception of stressors, influenced sensory inputs and their respective processing, which 
led to the well-described variability in physiological responses13,67–69.

As a main finding here, when stressors were added to the cognitive task (CT + S), no additional effect was 
reflected in vagal markers, whatever the subgroup (Table 1). It has been recently claimed that not only vagal but 
also sympathetic control could interfere in the relationship between cognitive processes and autonomic cardiac 
regulations30. This is particularly relevant when studying non-resting conditions, especially those consisting of 
stress induction. In our conditions, the cardiac sympathetic marker (LF power) did not rise in CT or in CT + S 
(Table 1). In sum, the analyses of cardiac markers in time-domain (RMSSD) and frequency-domain (HF, LF, 
LF/HF) were unable to detect stress responses whatever the participant profile, be it an anxiety responder or 
non-responder. It is worth noting that a mild stress was under investigation here, which could explain the absence 
of change in heart rate (see mean of RR intervals in Table 1), and vagal or sympathetic tones, even in anxiety 
responders.

As a key point in the present work, the benefit of a complexity marker to explore neurovisceral integration 
during mild stress was shown. There is recent evidence that complexity emerges as a promising framework to 
analyse cardiac-ending signals as a reliable picture of intricate cortical, subcortical and peripheral interactions 
within the CAN. This evidence is reinforced when studying cognition and stress that challenge a flexible system 
coordination44,45. Although it is acknowledged that the very mechanisms at the origin of complexity in time series 
are scarcely identified, physiological complexity has been associated with health70 and an elevated capacity to 
adjust to an ever-changing environment. Among complexity markers, entropy is defined as the main index able 
to inform about the rate of information production71, a rate that is heightened in a coordinated system. Notably, in 
our conditions, cardiac entropy increased during the cognitive task (CT) in each subgroup (Fig. 4), concomitantly 
with the rise in cognitive workload. This likely reflects a coordinated, flexible and robust neural network taking 
place for optimal perceptual and cognitive functioning. Recent neuroimaging studies evidenced that the degree 
of complexity in cerebral BOLD (Blood Oxygenation Level-Dependent) signals is positively correlated with cog-
nitive processes such as attention, memory and verbal fluency72. Therefore, the rise in cardiac entropy observed 
in our participants might be an indicator of enhanced heart-brain interactions.

By using a multiscale entropy approach, we showed a decrease in entropy in CT + S situation in anxiety 
responders, whereas anxiety non-responders maintained the heightened entropy gained during CT (Fig. 4). We 
draw a parallel with the decrease in cardiac entropy recently showed during university examinations45. This leads 
us to conclude that using a robust entropy-based method of HRV, entropy is a relevant marker of stress-induced 
changes in heart-brain interactions, even in mild stress conditions. The link observed here, between stress-related 
anxiety and breakdown in cardiac complexity during a cognitive task, finds support in recent functional imaging 
of the brain. Neuroimaging has evidenced a reduction in both prefrontal cortex and anterior cingulate cortex 
activities together with an increase in amygdala activity, associated with anxiety and stress41,73–75. In addition, 
anxiety reduced top-down control and connectivity between these structures, thus creating a bias towards related 
responses41,74. Such impairments might be at the origin of the loss of cardiac entropy observed in the present study 
in anxiety responders. Cardiac entropy could reflect central and autonomic regulations and consequently could 
reveal the alteration of heart-brain connectivity wherein the amygdala activity is involved. The amygdala-driven 
disruption in cortical-subcortical interactions may provide a kind of information overflow that impairs coordi-
nation between multiple interacting components. Typically, a degraded coordination in the neurophysiological 
system has been shown to reverberate in the complexity of cardiac-ending signal outputs42. In this scenario, a 
less adaptive and flexible cardiac autonomic control results from the effect of anxiety on the amygdala, which is 
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reflected in the cardiac signal entropy under mild stress. A potentially important consequence of this could be 
that exploring cardiac complexity is critical for the exploration of psychophysiological manifestations of stress.

Despite appealing outcomes, the current study is not without limitations. While an adequate total number 
of participants was achieved, as assessed by pre-hoc power-calculation, the results obtained in our male and 
female participants were analyzed altogether. Yet, a sexual dimorphism has been evidenced in psychophysiolog-
ical responses to stress and anxiety44, so that a greater number of female participants should make it possible to 
explore the sex-related nature of complex heart-brain interactions operating during cognitive tasks with stressors. 
Additionally, part of our analysis led us to distinguish two subgroups among our participants: anxiety responders 
and anxiety non-responders, with respective sample size: n = 20 and n = 13. Given the pre-hoc power-calculation, 
there is a risk of false negative, especially in non-responders (n = 13) when the hypothesis is rejected that entropy 
does not drop with stressors. Yet, it is worth noting that at an individual level (n = 33), we also observe a signifi-
cant correlation (p < 0.01, Fig. 5) between change in entropy and anxiety responsiveness. Thus, the main conclu-
sion, that a degraded cardiac entropy reflects the neurovisceral integrated response to anxiety during a cognitive 
task receives strong support. Finally, all the participants had university level of education and were accustomed to 
performing challenging cognitive tasks, which requires further investigation involving people without university 
education before our results could be generalized.

Conclusion
We found evidence that cardiac entropy changes concomitantly with acute responses to cognitive load and stress. 
While cardiac entropy could be a marker of enhanced complexity and adequate self-regulation during a cognitive 
task, a degraded entropy in cardiac signal outputs might reflect an overflow of neural information. This overflow 
might be due to an amygdala-induced disruption in the cortical-subcortical processing in anxious people. While 
it is obvious that entropy-based approaches should not replace spectral analysis of HRV – and their capacity to 
make a distinction between vagal and sympathetic responses –, exploring complexity in the neurophysiological 
control of heart rate likely adds significant value to our understanding of neurophysiological functioning in asso-
ciation with the anxiety-targeted role of the amygdala.
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